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Abstract. Deep learning models are usually trained on data sets containing sensitive information, such as
personal shopping transactions, personal contacts, and medical records. Therefore, more and more important
work attempts to train neural networks subject to privacy constraints, which are specified by differential
privacy or divergence-based relaxation. However, these privacy definitions have weaknesses in handling
certain important primitives (synthesis and sub-sampling), which makes the privacy analysis of training
neural networks loose or complex. Federated learning is a popular privacy protection method, which collects
local gradient information instead of real data. One way to achieve strict privacy guarantee is to apply
differential privacy to federated learning. However, previous work did not give a practical solution. This
paper proposes a new type of adaptive privacy-preserving and shuffling aggregation in federated-learning
mechanism design. It can make the data more different from its original value and introduce lower variance.
In addition, the proposed mechanism is updated through the split and shuffle model, avoiding the curse of
dimensionality. A series of empirical evaluations conducted on the three commonly used data sets of MNIST,
Fashi-MNIST and CIFAR-10 show that our solution can not only achieve excellent deep learning
performance, but also provide strong privacy protection.
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1. Introduction

With the brilliant success of AlphaGo, big data-driven artificial intelligence (Al) is expected to soon be
applied to all aspects of our daily lives [1-3].When integrating artificial intelligence into various loT
applications, distributed machine learning (ML) is very effective for many data processing tasks by defining
a parameterised function from input to output as a composition of the basic building blocks. The latest
advancement in distributed ML is presented in the form of Federated Learning (FL). In this approach, data is
retrieved and processed locally on the client side, and updated ML parameters are sent to a central server for
aggregation. Federated learning is a distributed machine learning approach that trains a lossless learning
model based on local training and parameter passing by the participants without direct access to the data
source.

A prominent advantage of FL is that it enables local training without any exchange of personal data
between the server and the client, thus preventing the client’s data from being eavesdropped on by hidden
adversaries. Despite the obvious advantages of federation learning and its development in line with the times,
its security should be tested before it is put into practice. In recent years, numerous research results have
shown that there are still security issues in the federated learning mechanism, where an attacker can still
compromise some personal data by analysing the differences between the relevant parameters trained and
uploaded by the client, such as the weights of the neural network training. There are also poisoning attacks,
counter-sample attacks, etc.Some existing approaches to prevent information leakage on federation learning
include the addition of artificial noise, differential privacy techniques. Existing works based on differential
privacy algorithms include local differential privacy [4], distributed SGD algorithms based on differential
privacy, and DP meta-learning.

There are several obvious problems and challenges in the previous approach. First, noisy data
approaches its original value with high probability and does not substantially reduce the risk of information
exposure [5]. Secondly, the estimated mean introduces a large variance, leading to poor accuracy. Therefore,
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more communication between the cloud and the client is required to achieve convergence of the algorithm.
Thirdly, the privacy budget explodes due to the high dimensionality of the weights in the deep learning
model. Finally, to the best of our knowledge, existing works have not demonstrated excellent deep learning
performance on popular datasets. In this paper, we propose a new neural network perturbation mechanism to
address the above issues. Predictive probability- based data perturbation on the neural network in the model
and local model weight splitting and shuffling are applied to a typical federated learning system. Our main
contributions are manifold. First, we propose a new perturbation mechanism for neural networks and show
how it can be applied to federated learning. By making the perturbed data clearer than the original values, we
demonstrate that the ROIT mechanism is more secure than existing mechanisms and significantly reduces the
risk of information leakage. Second, we apply splitting and shuffling to each client’s gradient to mitigate
privacy leaks caused by high-dimensional data and multiple query iterations. Third, we demonstrate that our
solution is able to present better model training performance with less variance over a mountain of average
computation. Finally, we evaluate ROIT-FL on three datasets commonly used in our previous work, namely
MNIST [6], Fashion-MNIST and CIFAR-10, respectively. The proposed mechanism achieves a privacy
budget of = 1 with an accuracy loss of 0.97% on MNIST, = 4 with an accuracy loss of 1.32% on Fashion-
MNIST, and = 10 with an accuracy loss of 1.09% on CIFAR-10.

2. Preliminary

In this section, we review the concept of federated learning, differential privacy and layer-wise relevance
propagation algorithm, which serve as the underlying structure of our ROIT.

2.1. Federated Learning

Suppose there are n participants and client Ci has local dataset Di, i belongs to 1, 2...n. Now it is
necessary to train the model Mgygpa in the total dataset D1 D2 .. Dn. Federated learning refers to a
distributed learning approach, i.e., it does not directly integrate all the data together training to get the model
Mgum, but instead each participant trains the local data to get new parameters based on the initial parameters
passed from the server. On the server side, its goal is to train a global model on N aggregated datasets. An
active client, training the model on the local dataset minimizes a particular loss function and gets the
corresponding weights. The server then collects the weights from the N clients and aggregates them:

Mj = ;piwi (1)

where wi is the training vector of the i-th client and w is the vector of parameters after client aggregation.
Such an optimization problem can be formulated as

N
}w* = argmin Z piFi(w)
w
i=1

)
3. Our Approach

3.1. Overview
In this section, we introduce the federated learning approach with ROIT consists of two steps, as shown
in Algorithm 1.

Cloud Update: First, the cloud initializes the weights randomly at the beginning. Let n be the total
number of local clients. Then, in the r-th communication round, the cloud will randomly select n, < n clients
to update their weights for local-side optimization. Unlike the previous works where they assume that the
aggregator already knows the identities (e.g., IP addresses) of the users but not their private data, our
approach assumes the client remains anonymous to the cloud. For example, the client can leverage a
changing IP address or the same IP address for all clients to send the local weights back to the cloud. This
approach can provide us more robust privacy bound and practical solution and more details in section 3.2.

Local Update: For each client, it contains its own private dataset. In each communication, the selected
local clients will update their local model by the weight from the cloud. Next, the local model uses
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Stochastic Gradient Descent (SGD) to optimize the distinct local models’ weights in parallel. In order to
provide a practical privacy protection approach, we split and shuffle each local model’s weights and send
each weight through an anonymous mechanism to the cloud. In this case, we can provide more reliable and
give a practical solution with available results in the final.

3.2. Randomized Privacy-preserving Adjustment T echnology
The following diagram shows the transformation process for each hidden neuron in the training model:
y=a(x*w+b) (3)

Here, x is the input vector, y is the output, b and () is the activation function used to combine linear and
non-linear transformations. z(w) = x * @ + b is the linear transformation part.

M , A r@domized mechanism for DP Algorithm 1 ROIT
T, T Adjacent databases ; ©
€0 The parameters related to DP 1: Data: T, w'™, p1, e and § ©)
Ci The i -th client 2: Initialization: t = 1 and w; * = w'®, Vi
D; The database held by the owner C; 3: whilet < T do
D The database held by all the clients 4; Local training process:
[ The cardinality of a set 5: while C; € {C1,C5,...,Cn} do
N Total number of all clients 6: Update the local parameters wi(-t) as
K The number of chosen clients (1 < K < N)
t The index of the ¢ -th aggreg?tion ® A F (o [ 1) 2
T The number of aggregation times w,; = arg el (wi) + 9 Wi —W
w The vector of model parameters
F(w)  Global loss function 7: Add noise and upload parameters
Fi(w) Local loss function from the ¢ -th client
o A presetting constant of the proximal term _ (1) ) GS;
) - . . w,' =w;" + —Lap| —
w,; Local uploading parameters of the ¢ -th client |Dy| €
w0 Initial parameters of the global model
wt) Global parameters generated from all local parameters 8: end while @
at the ¢ -th aggregation o SplitShuffle: W + WU Split Shuffle (w{")
‘f: True optimal model parameters that minimize F'(w) 10: Model aggregating
w The set of all local parameters with pertubation 11: end while

Since in the neural network structure, the output of the previous layer is the input of the next layer, we
can obtain that the original data are only used by the linear transformation of the first hidden layer.
Intuitively speaking, in order to obtain a learning model with privacy protection, we can inject noise into the
data of the first hidden layer [7]. A traditional linear transformation method consists of injecting noise with
the same confidentiality budget into the original data, and the improved version consists of injecting noise
with different confidentiality budgets. But our work is more competitive.

We creatively propose a Randomized Noise-Injection Technology (ROIT), which can improve the
accuracy and availability of the system. In particular, we introduce two adjustment factors: fand p (f [0, 1], p
[0, 1]) [1] where f represents a threshold to decide whether the contribution of the attribute to the output is
high or low, whose value is defined by users. i.e., the attribute classes, whose contributions which exceeds
threshold f , have a greater contribution to output. Then, we inject adaptive Laplace noise to all these
attributes. While the contribution is lower than threshold f, a probability selection is made for such attributes.
i.e., we choose the original data with probability 1 p, and to inject adaptive Laplace noise to some attributes

:E--:{ Zi ;B> f
" zi;B<f

(4)

with probability p. The formula is as follows:

l4]

Salel”

where represents the ratio of contribution: 8 =
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Algorithm 2 Data Perturbation Algorithm 3 Split&Shuttle

Input: Original w Input: Perturbed w after Algorithml

Output: w* after data perturbation Output: w* after split and shuffle

for each weight p € w do for each weight p € w do and its id (p, id) € w
if 8> fthen t <~ Random Sample a Time;

z:;u7 =z + lTIHLap( c,;:s;, ) w* + w* U (p,id,t)

else end for

x; ; = & ;8 > freplace p as px return w*

end if

end for

After perturb all p € w, then we have w — w*

return w*

3.3. Split & Shuffle

There are two parts to the shuffle mechanism: split and shuffle. The main goal is to enhance privacy
protection while using data perturbation in coalition learning. Split breaks the private connection weight of
each local client model, while shuffle breaks the privacy of communication between the local client and the
cloud. In order to better shuffle the weights, in Algorithm 3, each client will also randomly sample and send
each weight to the cloud. Our method is to first divide the weight of each local model by each model. Then,
each weight is shuffled through the client anonymity mechanism, and the id of each weight is sent to the
cloud [8]. Finally, split and shuffle allows the cloud to ensure that the correct weight values are collected to
update the central model without having to know the relationship between each weight and the local client.

We use split and shuffle to bypass the curse of dimensionality. Since the weights are split and uploaded
anonymously, the cloud cannot associate different weight values of the same client, and therefore cannot
infer more information about a certain client. Therefore, ROIT is sufficient for each weight. Also, due to
anonymity, the cloud cannot connect weights from the same client in different iterations. Without splitting
and shuffling, the privacy budget will grow to T d, where T is the number of iterations and d is the number of
weights in the model.

4. Experiments
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Fig. 1: Comparison of accuracy on MINIST and CIFAR.

In this section, the effectiveness of ROIT is evaluated using an image classification task as experimental
examples. First, the effect of different weights is verified using MNIST and Fashion-MNIST image reference
data, followed by performance validation using CIFAR-10 and three previous datasets. Here, for MNIST [9]
and Fashion-MNIST, (c, r) = (0, 0.075) and r = 0.015.For CIFAR-10, due to the complexity of the network, ¢
=0 and r is set within the range of weights for each layer. the learning rate is 0.03 for MNIST and 0.015 for
CIFAR-10. taking into account the randomness when perturbing, the test experiment were run 10 times
independently to obtain the average value. In order to explore the impact of the specific value of the privacy
level on the quality of the images, we have conducted several experiments on datasets. In these experiments,
we trained by setting different privacy parameters and got several models of privacy protection levels. The
generated images are shown in Fig. 1, Fig. 2 and Fig. 3, corresponding to different levels of privacy
parameters. It can be seen that we can generate clear images when the privacy level is high. And large
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privacy parameters correspond to high-quality images, which indicates the distortion of the image is caused
by noise rather than a poor quality training set. According to [10], large privacy parameter means great risk
of privacy breaches, but it also means better generated data. This is a trade-off between privacy and
performance.
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Fig. 2: Comparison of IS on MNIST dataset Fig. 3: Comparison of FID on CelebA dataset

5. Conclusion and Future Plan

In this paper we propose a new mechanism for ROIT and show how it can be applied to protect coalition
learning, applying partitioning and shuffling to each client’s gradient to mitigate the privacy degradation
caused by large data sizes and many query iterations. Empirical studies show that our system performs better
than previous related work on the same image classification task. This is expected to greatly accelerate the
practical application of NOIT in collaborative learning. In the future, several research questions can be
explored, such as preventing client anonymisation from side-channel attacks, improving data perturbation
mechanisms, and applications to natural language processing, speech recognition, and graph learning.
Furthermore, it is very important to generalise the proposed privacy protection techniques to other scenarios.
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